Best-of- ∞ — Asymptotic Performance of Test-Time Compute

RIKEN AIP, LLM×ML Workshop, Oct 3 2025

Junpei Komiyama (MBZUAI / NYU / RIKEN AIP), joint work with Daisuke Oba (Sci Tokyo), Masafumi Oyamada (NEC)

(This slide was heavily assisted by LLMs, though the best-of-N strategy was not used.)

Agenda

- Introduction
 - Best-of-∞, the limit of Best-of-N with large N
- Adaptive Sampling:
 - Efficient test-time compute, approaching Best-of-∞ with limited computational budget
- LLM Ensemble
 - Complementary strength of multiple LLMs
- Summary

Test-time compute

☐ This talk focuses on test-time compute, where we use LLMs are used to answer questions.

Pretraining Posttraining Test-time compute

THIS TALK IS ABOUT →

LLM on Math Reasoning

- AIME2024 (high-school math competition, pre-Olympiad level):
 - Q. Eight circles of radius 34 are sequentially tangent, and two of the circles are tangent to sides AB and BC of triangle ABC, respectively. 2024 circles of radius 1 can be arranged in the same manner. The inradius of triangle ABC can be expressed as $\frac{m}{n}$, where m and n are relatively prime positive integers. Find m+n.

Challenging math question:
And I ask a local LLM
(say, gpt-oss-20b, phi-4-reasoning)
for answering this question.

Goal

- Math/sci reasoning tasks (e.g., AIME2024/2025, MATH500, GPQA-DIAMOND)
- If we have access to infinite test-time compute resource (= local LLMs), how accurate we can be, in answering such questions?
 - We define Best-of-∞ performance.
- How close we can be, given a finite test-time compute budget?
 - Use computational resources efficiently.

LLM uses Chain-of-thoughts (CoT) before answering

30K tokens CoT **Answer**

cincles of radius 1 can be arranged in the same manner. The inradius of triangle ABC can be expressed as m/n, where m and n are relatively prime positive integers. Find man."

We need to re-read the problem: "Eight circles of radius 34 are sequentially tangent, and two of the circles are tangent to AB and BC of triangle ABC, respectively. 2024 circles of radius 1 can be arranged in the same manner. The inradius of triangle ABC can be expressed as m/n, where m and n are relatively prime positive encountries. The problem is about circles are tangent to AB and BC of triangle ABC, respectively. 2024 circles of radius 1 can be arranged in the same manner. The inradius of triangle ABC can be expressed as m/n, where m and n are relatively prime positive encountries. The problem is about circles are tangent along the incircle of a triangle? Possibly it's concluded the chain. But reading: "Eight circles of possibly as problem, and the circles are tangent to the arranged and the circles are tangent to the cangent to the arranged and the circle touches AB at some point. There is a chain of circles arranged inside the triangle? They are tangent to each other sequentially and also tangent to sides of the triangle. And then "two of the river tangent to the problem and the circle touches arranged inside the triangle? They are tangent to each other sequentially and also tangent to sides of the triangle. And then "two of the river tangent to the problem and the circle tangent to the triangle and the circle tangent to the triangle. The problem is a sequentially and also tangent to the first chain and the circle tangent to the problem and the circle tangent to the triangle and the circles of radius 1 can be arranged in the same manner. The problem is as follows: They are arranged in a line, each tangent to the manner to each other sequentially. Two of these circles are externally tangent to two sides of triangle above the circles of radius 1 can be arranged in the same pattern. The problem likely uses similarity of chain lengths

A short "road-map" of the idea is as follows:

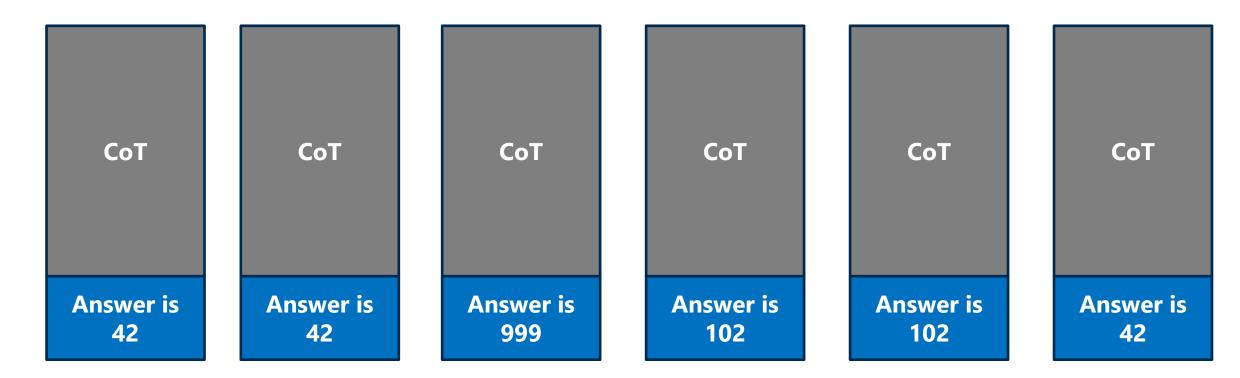
1. In a triangle the incircle touches two side tange Summary of than swelle betwee 2. An easy application of the cosine-law in the (R - Step 1: XX 3. Writing this out for the two given chains (approStepns2:eVy to an equation which, after 253(R - 34) = 34(R - 1).

4. Solving this gives R = 2856/73 and hence must be supposed answer is Final answer is Final answer is Loxed 2929}.

I need to think before answering a difficult question

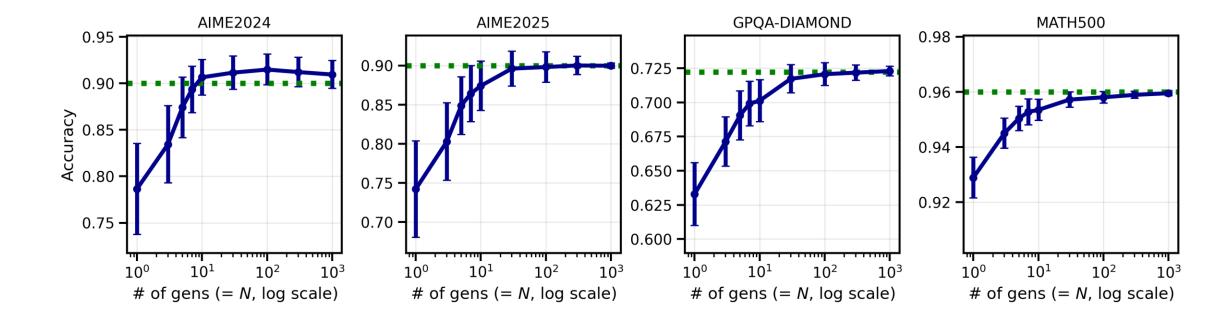
LLM reasoning: Best-of-N

- LLM's decoding process is random. Sometimes it answers correctly/incorrectly.
- Use best-of-N: Generate N answers.
- Selection rule: Majority voting.



Best-of-N improves accuracy

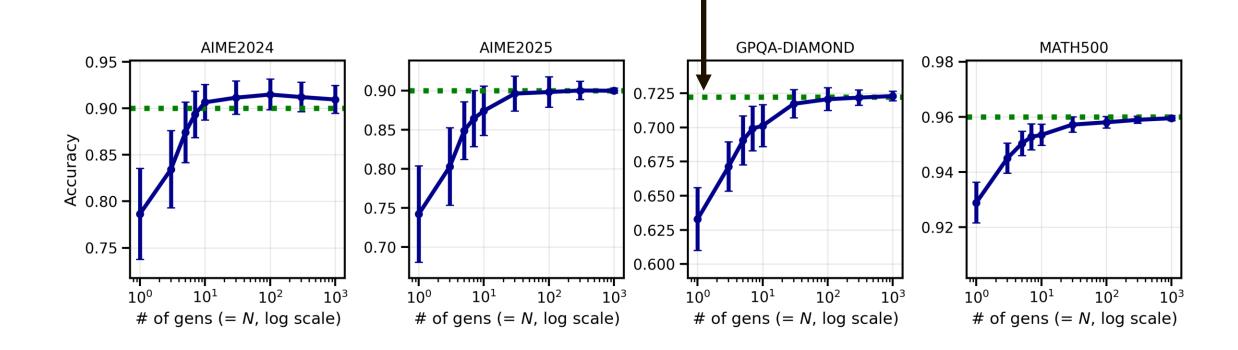
- Larger N, better accuracy.
 - Effective till N=100~1000.



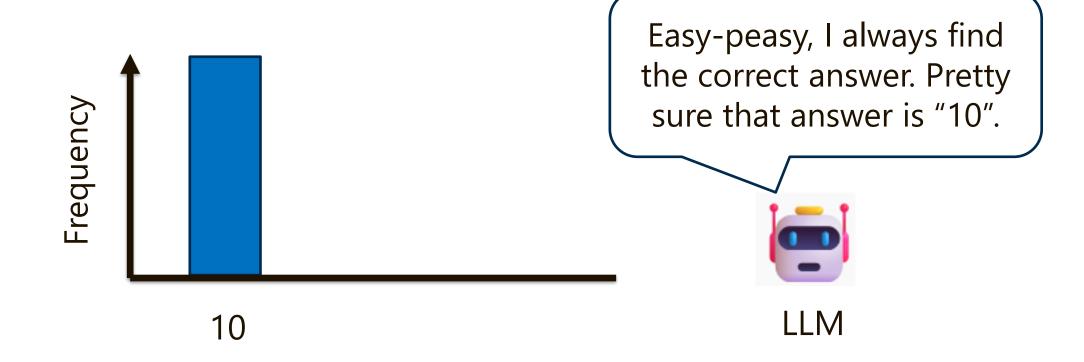
Best-of-N improves accuracy

- Larger N, better accuracy.
 - Effective till N=100~1000.

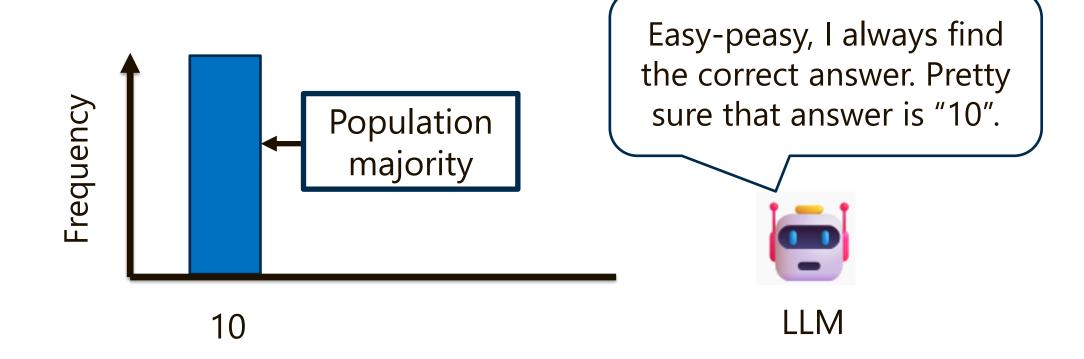
Green dotted line = Best-of-∞ performance



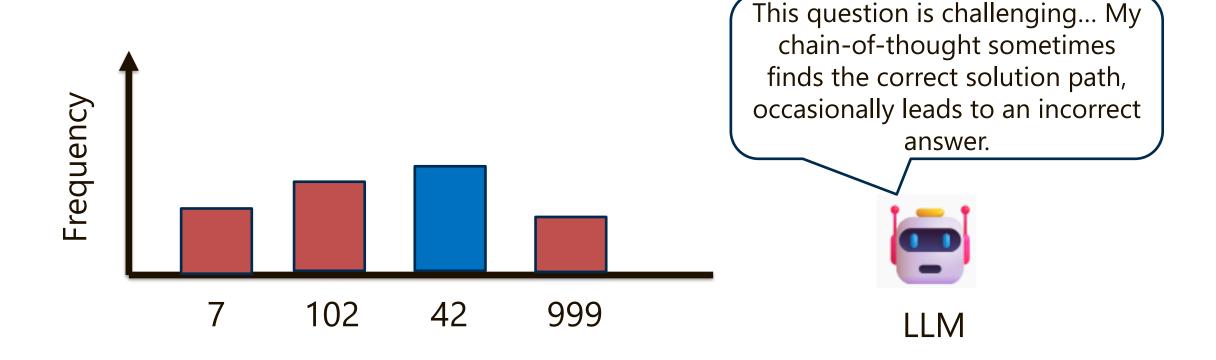
- \square At the limit of $N \to \infty$, there is a distribution of answers.
- For an easy question, LLM's answer is uniform (and correct)



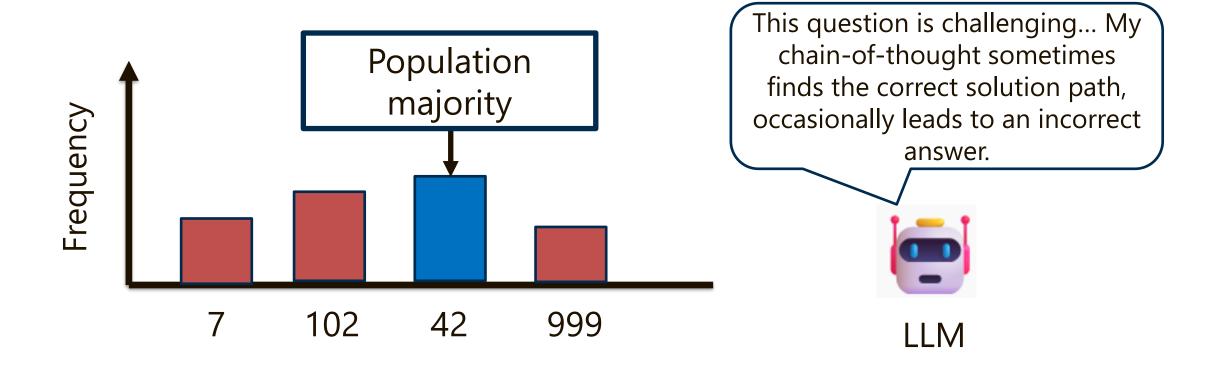
- \square At the limit of $N \to \infty$, there is a distribution of answers.
- For an easy question, LLM's answer is uniform (and correct)



- \square At the limit of $N \to \infty$, there is a distribution of answers.
- For a hard question, LLM's answer varies



- \square At the limit of $N \to \infty$, there is a distribution of answers.
- For a hard question, LLM's answer varies



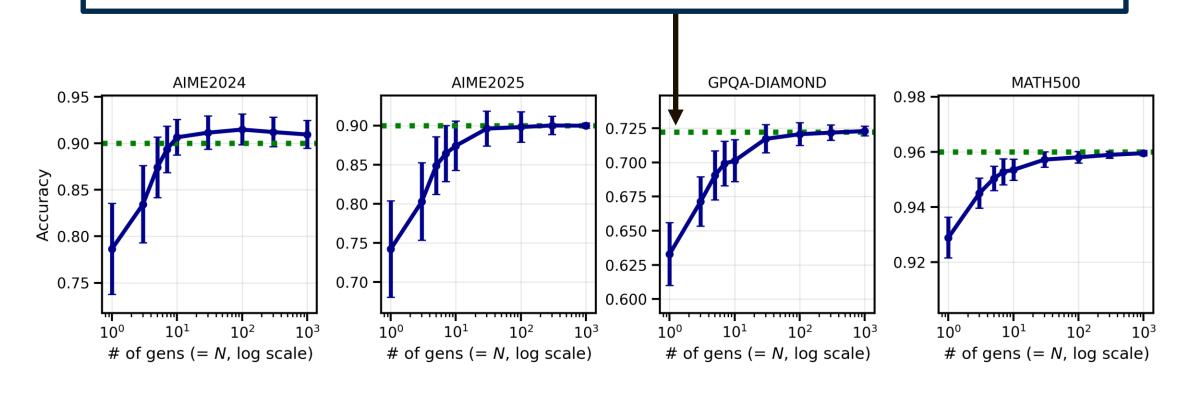
■ Best-of-∞ performance is defined as

$$\frac{1}{|\text{Questions}|} \sum_{q \in \text{Questions}} 1[\text{Gold answer} = \text{population majority answer}]$$

- For example, AIME2025 consists of 30 questions. Phi-4-reasoning (Microsoft's open weight LLM)'s population majority matches the gold answer in 25 out of 30 questions.
 - The Best-of-∞ performance is 0.833 (= 25/30)

Best-of-∞ accuracy

To achieve Best-of-∞ accuracy, we need infinite, or sufficiently large N, samples



Adaptive Sampling

- Adaptive sampling: Ask LLM for the next generation or terminate.
- Better use of test-time compute budget:
 - For easy problems -> consistent answers -> early termination
 - For hard problems -> answer varies -> ask LLM for more answers
- Demo: https://jkomiyama.github.io/bestofinfty/llm-consensus-demo.html

Adaptive Sampling: When to terminate?

Consider it as a hypothesis testing

 H_0 : The most frequent answer A_1 is not the true majority.

 H_1 : The most frequent answer A_1 is the true majority.

 \square Confidence to H_1 : Termination based on thresholding Bayes factor:

$$\mathrm{BF}(n) := \frac{\mathbb{P}(\mathcal{D}(n)|H_1)}{\mathbb{P}(\mathcal{D}(n)|H_0)} = \frac{\mathbb{P}(H_1|\mathcal{D}(n))}{\mathbb{P}(H_0|\mathcal{D}(n))} \cdot \frac{\mathbb{P}(H_0)}{\mathbb{P}(H_1)} \quad \text{(Bayes' theorem)}$$

$$\approx s(n) \frac{\mathbb{P}(H_1|\mathcal{D}(n))}{\mathbb{P}(H_0|\mathcal{D}(n))}$$

of unique answers so far

Posterior ratio, modelled as a Dirichlet process

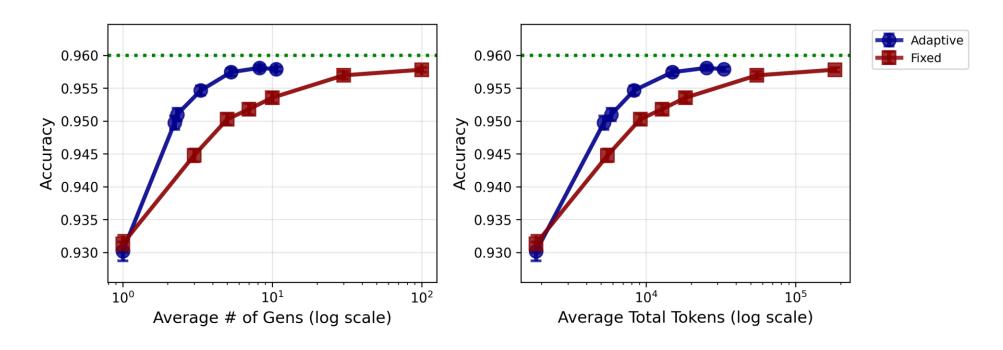
Algorithm for Adaptive Sampling

- Algorithm Repeat the follows:
 - Sample (= ask LLM to generate) answers from the LLM.
 - Update counts and the Bayes factor after every generation.
 - If $BF \ge B$ (threshold) or had N_{max} generations, terminate.
- Output the majority answer among collected generations.

□ Theorem (consistency): As B, $N_{\text{max}} \rightarrow \infty$, the procedure matches Best-of- ∞ accuracy almost surely.

Adaptive Sampling: Empirical Performance on MATH500

- Adaptive sampling based on Bayes factor is very efficient:
 - Average N = 3 -> comparable to fixed sampling with N = 10
 - Average N = 10 -> comparable to fixed sampling with N = 100



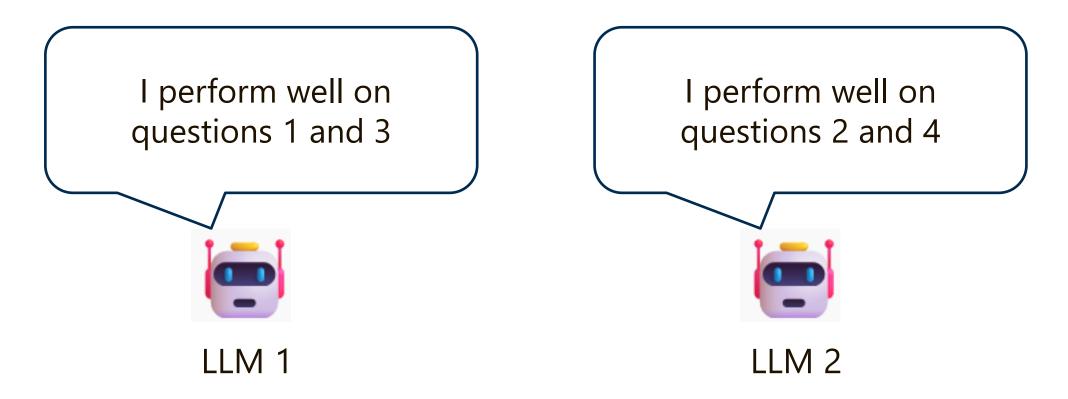
LLM: GPT-OSS-20B, Dataset: MATH500

Agenda

- Introduction
 - Best-of-∞
- Adaptive Sampling:
 - Efficient test-time compute, approaching Best-of-∞ with limited computational budget
- LLM Ensemble
 - Complementary strength of multiple LLMs
- Summary

Why Ensembles?

- Different LLMs offer complementary strengths on reasoning tasks.
- Weighted sampling per generation lets weaker-but-diverse models contribute.
- Objective: maximize majority-vote accuracy in the limit by weighting LLMs.

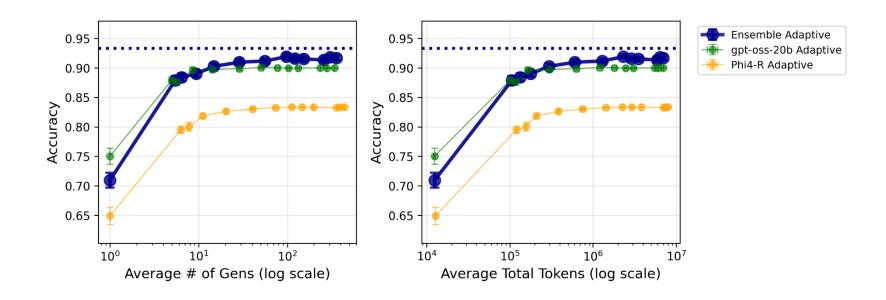


Adaptive LLM Sampling: Algorithm

- □ Input: List of LLMs i = 1, 2, ..., K
- Repeat the followings:
 - Select LLM with weight vector $\mathbf{w} = (w_1, w_2, ..., w_K)$.
 - Ask the LLM to generate answers from the LLM.
 - Update counts and the Bayes factor after every generation.
 - If $BF \ge B$ or had N_{max} generations, terminate.
- Output the majority answer among collected generations.

Best-of-∞ of Ensemble > max Best-of-∞ of single LLM

- Example: On AIME2025,
 - Best-of-∞ of gpt-oss-20b: 0.900 (27/30)
 - Best-of-∞ of Phi-4-reasoning: 0.833 (25/30)
 - Best-of-∞ of weighted mixture: 0.933 (28/30)



Optimal weight

The weight $w_1, w_2, ..., w_K$ optimization is reduced to the following **mixed integer** linear programming (MILP).

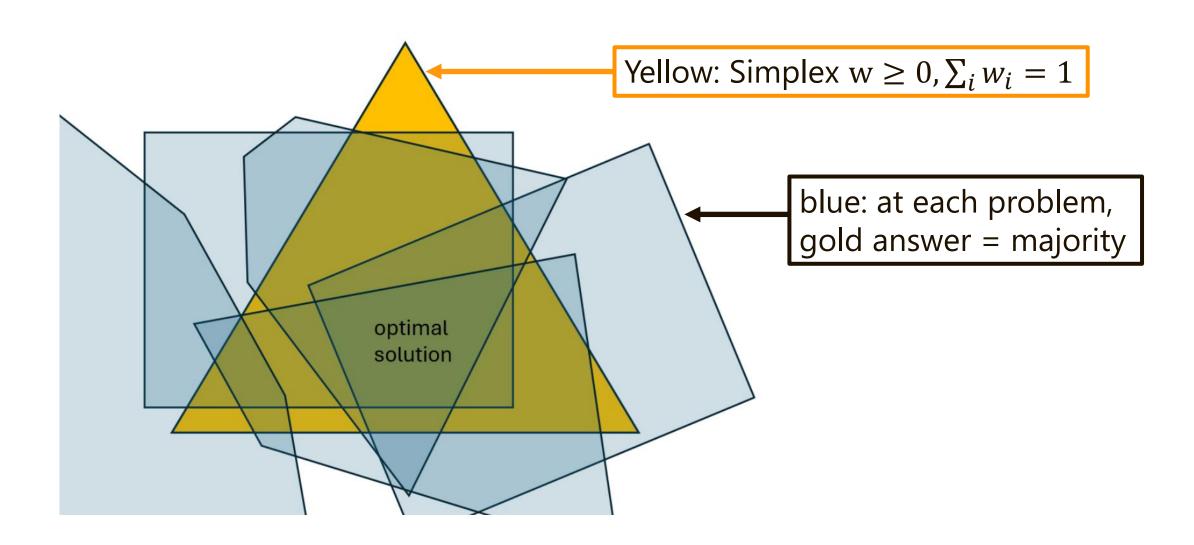
$$\max_{w \in \Delta^K, y \in \{0,1\}^N} \sum_q y_q \qquad \text{\# of correctly answered questions}$$

$$\text{s.t. } w_i \geq 0 \ \forall_i \\ \sum_i w_i = 1$$

$$weight \text{ is on simplex (summation 1)}$$

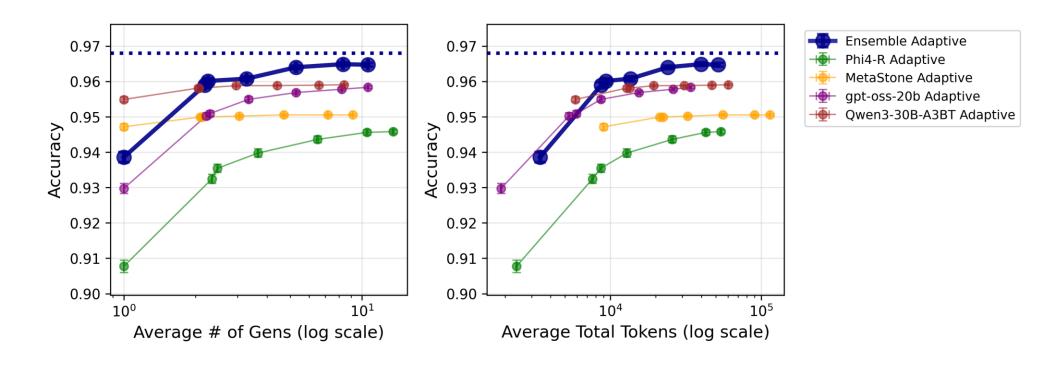
$$A_q w \geq -m(1-y_q) \ \forall q \qquad \text{gold answer = population majority}$$

Illustration of the optimal weight



Scalability

- MILP is NP-complete to solve, does not scale for extremely large instance.
- \square In practice, Optimization easily scales up to ~10 LLMs and ~500 questions.



LLM Ensemble performance in the MATH500 dataset

We have released the generation dataset

- □ To estimate Best-of- ∞ accuracy, we generate ≥ 80 answers for each question.
- Over 500k generated solutions, up to 800M tokens per LLM.

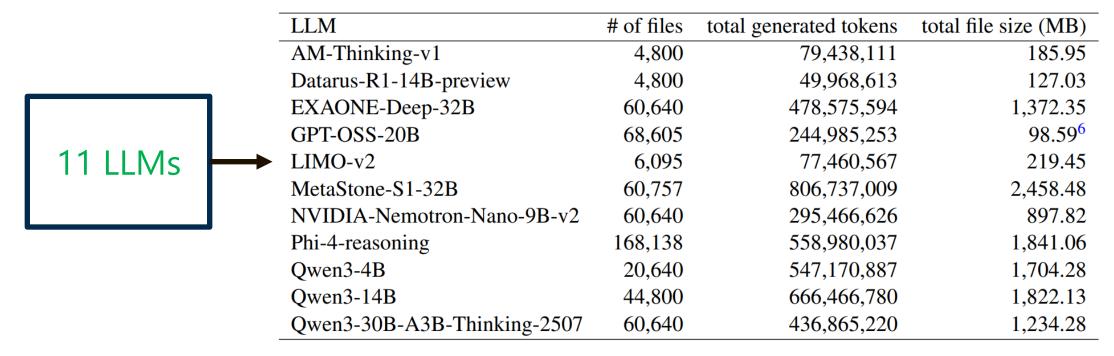


Table 1: Statistics of the large-scale generation dataset that we used in our experiments. Each file corresponds to a single answer. We release it with our code.

Summary

- Best-of-N with adaptive N approaches to Bestof-∞ performance.
- Weighted LLM Ensemble.
 - Outperforms any single LLM.
 - Optimized weights via mixed-integer linear programming (MILP).
- □ Publicly available dataset: 11 open-weight reasoning LLMs × 4 hard benchmarks × 80+ generations each.

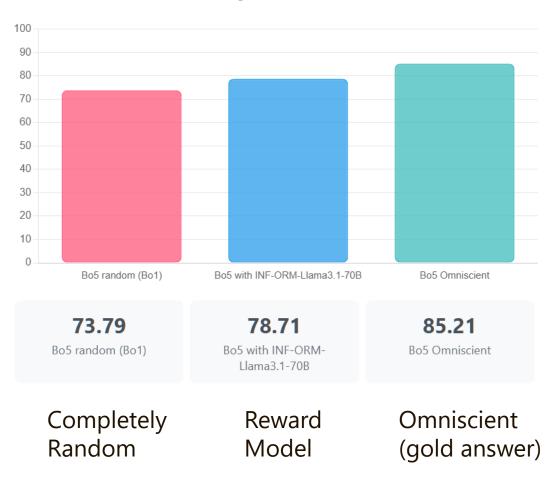
Paper URL (QR below): https://jkomiyama.github.io/bestofinfty/

(the following are supplementary materials)

LLM reasoning: Best-of-N

- Reward-hacking: Best answer in terms of reward is NOT always the correct answer.
- On heavy-reasoning tasks, best reward models are still random-ish.
- How can we get close to "omniscient" BoN?

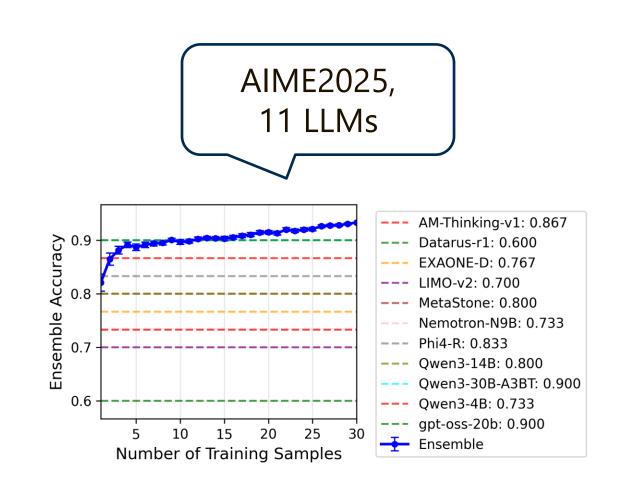
Accuracy on AIME2024



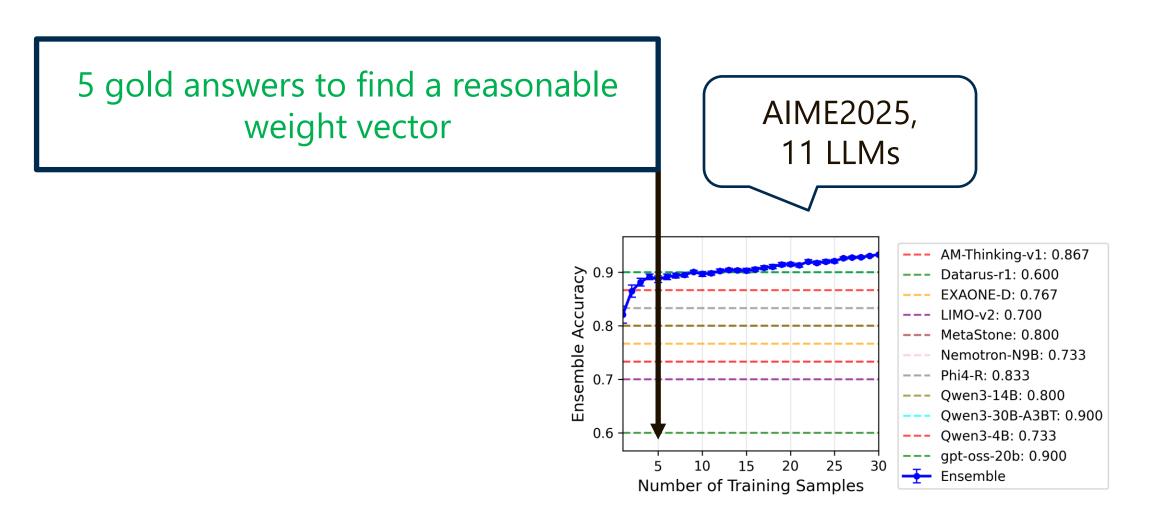
Additional experimental findings

- □ Transfer learning: Weights trained on AIME2024 beat or tie best single model on AIME2025 in 64% of 165 combinations.
 - Moderately effective?
- Selection comparison (Bo5 on AIME2025): Majority voting outperforms reward models and LLM-as-a-judge variants.
 - Majority voting is still one of the most useful aggregation.

How many gold answers are needed to obtain good weights?



How many gold answers are needed to obtain good weights?



How many gold answers are needed to obtain good weights?

