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Test-time compute

1 This talk focuses on test-time compute,
where we use LLMs are used to answer
guestions.

THIS TALK IS ABOUT -




AIME2024 (high-school math competition, pre-Olympiad level):

Q, Eight circles of radius 34 are sequentially tangent, and two of the circles
are tangent to sides AB and BC of triangle ABC, respectively.

2024 circles of radius 1 can be arranged in the same manner.

m
The inradius of triangle ABC can be expressed as —,

T
where m and n are relatively prime positive integers.

Find m + n.

Challenging math question:

And | ask a local LLM

(say, gpt-0ss-20b, phi-4-reasoning)
for answering this question.




Math/sci reasoning tasks (e.g., AIME2024/2025, MATH500, GPQA-DIAMOND)

If we have access to infinite test-time compute resource (= local LLMs), how
accurate we can be, in answering such questions?

We define Best-of-co performance.
How close we can be, given a finite test-time compute budget?

Use computational resources efficiently.



LLM’s answer

30K tokens

> 1K tokens

/ \

Lengthy and repetitive “reasoning process”
Step: 1:1s XX, Step 2:1s'YY

Wait, Step 1-is wrong, the correct step is...
Alternatively, Step.2. can be...
Wait, this is ...

| need to think before

Summary-of answering a difficult question

Step 1: XX
Step2:YY i
L
Final answer is =
LLM



LLM reasoning: Best-of-N

1 LLM'’s decoding process is random. Sometimes it answers correctly/incorrectly.
1 Use best-of-N: Generate N answers.

1 Selection rule: Majority voting.

Answer is Answer is Answer is
102 102 42

Answer is Answer is Answer is
42 42 999




Larger N, better accuracy.
Effective till N=100~1000.
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At the limit of N — oo, there is a distribution of answers.

For an easy question, LLM's answer is uniform (and correct)

Frequency
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-

Easy-peasy, | always find
the correct answer. Pretty
sure that answer is “10".
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At the limit of N — oo, there is a distribution of answers.

For an easy question, LLM's answer is uniform (and correct)

Population
majority

Frequency
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Easy-peasy, | always find
the correct answer. Pretty
sure that answer is “10".

~N

J

|

LLM



Best-of-o Performance

1 At the limit of N —» oo, there is a distribution of answers.

1 For a hard question, LLM's answer varies

(" This question is challenging... My\
chain-of-thought sometimes
finds the correct solution path,

occasionally leads to an incorrect

>

/ 102 42 999 LLM
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At the limit of N — oo, there is a distribution of answers.

For a hard question, LLM's answer varies

Population
majority

(" This question is challenging... My\
chain-of-thought sometimes
finds the correct solution path,

occasionally leads to an incorrect

\/answer. Y,

-
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Best-of-co performance is defined as

1
|Questions|

Z 1[Gold answer = population majority answer]

g€eQuestions

For example, AIME2025 consists of 30 questions. Phi-4-reasoning (Microsoft's
open weight LLM)’s population majority matches the gold answer in 25 out of 30

guestions.
The Best-of-oo performance is 0.833 (= 25/30)



To achieve Best-of-co accuracy, we need infinite, or sufficiently
large N, samples
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Adaptive sampling: Ask LLM for the next generation or terminate.
Better use of test-time compute budget:
For easy problems -> consistent answers -> early termination
For hard problems -> answer varies -> ask LLM for more answers

Demo: https://jkomiyama.github.io/bestofinfty/lim-consensus-demo.html



https://jkomiyama.github.io/bestofinfty/llm-consensus-demo.html
https://jkomiyama.github.io/bestofinfty/llm-consensus-demo.html
https://jkomiyama.github.io/bestofinfty/llm-consensus-demo.html
https://jkomiyama.github.io/bestofinfty/llm-consensus-demo.html
https://jkomiyama.github.io/bestofinfty/llm-consensus-demo.html

Consider it as a hypothesis testing

Hy : The most frequent answer A; is not the true majority.

H : The most frequent answer A; is the true majority.

Confidence to H;: Termination based on thresholding Bayes factor:

P(D(n)|H1) _ P(H1|D(n)) P(Ho)
P(D(n)|Ho) P(Ho|D(n)) P(H)

BF(n) := (Bayes' theorem)

Ho|D(n))
# of unique answers so far \ fPosterior ratio, modelled as a Dirichlet process




Algorithm - Repeat the follows:
Sample (= ask LLM to generate) answers from the LLM.
Update counts and the Bayes factor after every generation.
If BF > B (threshold) or had N,,,x generations, terminate.

Output the majority answer among collected generations.

Theorem (consistency): As B, Ny.x — 0, the procedure matches Best-of-co
accuracy almost surely.



Adaptive sampling based on Bayes factor is very efficient:
Average N = 3 -> comparable to fixed sampling with N = 10
Average N = 10 -> comparable to fixed sampling with N = 100

== Adaptive
096) fes"sssssnssssssnnennmmnnsnnunnnunnnns 0960 +rsssssssssnnssnnnnssnnnnnnnnnnnnnnnny * Fixed
0.955 A 0.955
> 0.950 > 0.950
o) @]
o 0
S 0.945 5 0.945
|9 |9
Q O
< 0.940 <T 0.940
0.935 0.935
0.930 0.930
10° 10! 10? 104 10°
Average # of Gens (log scale) Average Total Tokens (log scale)

LLM: GPT-OSS-20B, Dataset: MATH500
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Different LLMs offer complementary strengths on reasoning tasks.
Weighted sampling per generation lets weaker-but-diverse models contribute.

Objective: maximize majority-vote accuracy in the limit by weighting LLMs.

4 ) 4 )
| perform well on | perform well on
questions 1 and 3 questions 2 and 4
\/ / \/ Y,
o) o)

LLM 1 LLM 2



Input: List of LLMs i = 1,2, ...,K

Repeat the followings:
Select LLM with weight vector w = (w, w,, ..., wg).
Ask the LLM to generate answers from the LLM.
Update counts and the Bayes factor after every generation.
If BF > B or had N, generations, terminate.

Output the majority answer among collected generations.



Example: On AIME2025,
Best-of-co of gpt-0ss-20b: 0.900 (27/30)
Best-of-co of Phi-4-reasoning: 0.833 (25/30)
Best-of-co of weighted mixture: 0.933 (28/30)
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Optimal weight

0 The weight wy, w,, ..., wx optimization is reduced to the following mixed integer
linear programming (MILP).

max Z Yq <—| # of correctly answered questions ‘
q

weAX gefo, 1}

st. w; >0V;

<—|nght Is on simplex (summation 1) ‘
S wi=1
i

Aw > —m(1 —y,) Vg gold answer = population
majority




lllustration of the optimal weight

blue: at each problem,
gold answer = majority




MILP is NP-complete to solve, does not scale for extremely large instance.

In practice, Optimization easily scales up to ~10 LLMs and ~500 questions.
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LLM Ensemble performance in the MATH500 dataset



To estimate Best-of-oo accuracy, we generate > 80 answers for each question.

Over 500k generated solutions, up to 800M tokens per LLM.

LLM # of files total generated tokens total file size (MB)
AM-Thinking-v1 4,800 79,438,111 185.95
Datarus-R1-14B-preview 4,800 49,968,613 127.03
EXAONE-Deep-32B 60,640 478,575,594 1,372.35
GPT-OSS-20B 68,605 244,985,253 98.59°
11 LLMs LIMO-v2 6,095 77,460,567 219.45
MetaStone-S1-32B 60,757 806,737,009 2,458.48
NVIDIA-Nemotron-Nano-9B-v2 60,640 295,466,626 897.82
Phi-4-reasoning 168,138 558,980,037 1,841.06
Qwen3-4B 20,640 547,170,887 1,704.28
Qwen3-14B 44,800 666,466,780 1,822.13
Qwen3-30B-A3B-Thinking-2507 60,640 436,865,220 1,234.28

Table 1: Statistics of the large-scale generation dataset that we used in our experiments. Each file corre-
sponds to a single answer. We release it with our code.



Best-of-N with adaptive N approaches to Best-
of-co performance.

Weighted LLM Ensemble.
Outperforms any single LLM.

Optimized weights via mixed-integer linear
programming (MILP).
Publicly available dataset: 11 open-weight
reasoning LLMs X 4 hard benchmarks X 80+
generations each.

Paper URL (QR below):
https://jkomiyama.github.io/bestofinfty/



https://jkomiyama.github.io/bestofinfty/

(the following are supplementary materials)



LLM reasoning: Best-of-N

- Reward-hacking: Best answer in terms of Accuracy on AIME2024
reward is NOT always the correct answer. «

90

- On heavy-reasoning tasks, best reward ”
models are still random-ish. ”
- How can we get close to “omniscient” )
BoN? .

’ Bo5 random (Bo1) Bo5 with INF-ORM-Llama3.1-70B Bob5 Omniscient

73.79 78.71 85.21
Bo5 random (Bo1) Bo5 with INF-ORM- Bo5 Omniscient
Llama3.1-70B
Completely Reward Omniscient

Random Model (gold answer)



Transfer learning: Weights trained on AIME2024 beat or tie best single model on
AIME2025 in 64% of 165 combinations.

Moderately effective?

Selection comparison (Bo5 on AIME2025): Majority voting outperforms reward
models and LLM-as-a-judge variants.

Majority voting is still one of the most useful aggregation.



How many gold answers are needed to obtain good

weights?
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How many gold answers are needed to obtain good
weights?

5 gold answers to find a reasonable

AIME2025,

welght vector 1 LM
S

=== AM-Thinking-v1l: 0.867
L s Datarus-rl: 0.600
A I EXAONE-D: 0.767
""""""""""" -== LIMO-v2: 0.700
MetaStone: 0.800
_______________________ Nemotron-N9B: 0.733
4+ - Phi4-R: 0.833
—-=- Qwen3-14B: 0.800
Qwen3-30B-A3BT: 0.900
o I e -=- Qwen3-4B: 0.733
——- gpt-0ss5-20b: 0.900

—$— Ensemble

o
©
1
]
I
|
I
1

o
o0

Ensemble Accuracy
=]
~J
1 |
1 |
]

o
o

5 10 15 20 25 30
Number of Training Samples



How many gold answers are needed to obtain good
weights?

AIME2024, AIME2025,
2 LLMs 11 LLMs
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